Ag Instructor Vic Martin: Losing Our Most Valuable Natural Resource

Great Bend Tribune
Published June 11, 2017

On Wednesday a load of wheat was delivered to an elevator in Moundridge and test cutting is ongoing and the 2017 wheat harvest is underway, depending on the weather.  The ninety degree plus temperatures will certainly accelerate wheat maturity.  Now on to today’s topic.

The U.S., the United Kingdom and Russia were the three main countries that initiated the serious systematic study of soils in the 19th Century.  We will skip the reasons here but suffice it to say they were large countries/empires with vast areas of arable land that varied greatly and presented many challenges.  One of these challenges was the loss of topsoil, the A soil horizon.  While U.S. scientists were aware of and concerned by erosion, there was no focused effort on addressing this condition until the 1930s.  The Dust Bowl, combined with the Great Depression focused the attention of Washington on wind erosion in the Great Plains.  Back in the Eastern U.S., erosion was also a major problem but water erosion was the main concern.  Alarm over what was happening led to a concerted effort by the Federal Government to stop soil erosion (conserve) and restore productivity.  This led to research sites and labs to study the phenomena and determine methods to prevent erosion.  And it led to the agency termed the NRCS, the Natural Resources and Conservation Service, today and programs like the Conservation Reserve Program. 

Over the last seventy years tremendous progress has been made in cultural practices providing producers with the tools necessary to dramatically and even reduce erosion.  More than just planting techniques have played a role.  The development of chemical pest control also played a major role as did the development of cultivars allowing for more diversity of crop rotations.  However, soil erosion is still a problem today.

Over the last five years Kansas has experienced a drought far worse than the Dust Bowl and swung to extremely wet weather with torrential rains in many spots.  The improvement in all aspects of crop production was evident during the drought and the deluges.  However, these extremes still resulted in significant water and wind erosion in many areas of not just Kansas but the entire country.

Why does this matter so much considering the progress we have made?  Aside from the damage both on-site and off, erosion robs producers of a resource, soil, that they cannot replace in their lifetime.  On average, an inch of topsoil takes approximately 500 years to produce, longer in drier areas and less in wetter areas.  The most fertile, productive and important part of the soil is the topsoil or A horizon.  The A horizon is anywhere from several inches in depth to slightly over a foot typically.  Any soil loss is significant but especially so in areas that have already lost soil due to erosion.  It isn’t that the subsoil, B horizon can’t be farmed but it is typically less productive and requires significantly increased input costs and management.

Next week, how do wind and water erosion occur.


Part I - Wind Erosion
Published June 18, 2017

Wheat harvest is progressing as this is written and if the Thursday night storms hold off, harvest should be in full swing.  And before discussing wind erosion, Happy Fathers’ Day to all the dads out there.  Today we will start to tackle wind erosion.  If you think soil erosion is soil erosion you would be wrong.  While there are some similarities and both remove valuable soil particles, water and wind erosion differ in major ways.  So today we will discuss wind erosion mechanisms.  And remember that areas like Western Kansas experience both types of erosion and in fact damage from water erosion can be worse in an area like ours than in the traditional Corn Belt.

Wind erosion is the physical relocation of sand, silt, and clay, naturally by wind.  This problem is worse in arid and semi-arid areas because of less vegetative growth, less organic matter accumulation and less soil development (less clay and more sand and silt sized particles).  Before discussing wind erosion, one principle is key – wet soils don’t blow.

The three phases of wind erosion are detachment/abrasion, transportation, and deposition.  Detachment has a snowball effect.  Once a few soil particles break loose, they break loose more soil particles which break loose more and so on. 

Transportation, the movement of soil particles is determined by the size of the soil particle.  The larger the particle the less distance it will travel. The three types of transportation are:

  1. Saltation – movement of soil particles by a series of short bounces along the soil surface.  This is 50 – 90% of total soil movement, especially sand sized, larger particles.  These particles cause other particles to become dislodged and move.
  2. Soil Creep – next step after saltation.  Rolling or sliding of larger soil particles along the soil surface.  Particles up to about 1 mm in diameter and 5 – 25% of soil movement.
  3. Suspension – fine-sized sand and smaller particles.  These get up into the atmosphere and stay there.  Once suspended these particles can be transported thousands of miles.  This resulted in the Dust Bowl in the 1930s and the dust storms we experience today.

Deposition, where the particles end up is a function of their size.  The smaller the particle the further is can be transported.  It may be tens of feet as in saltation, hundreds of yards with soil creep, and thousands of miles with suspension.  For saltation and soil creep, particles are deposited when the wind speed is insufficient to move them.  For suspension, particles will stay suspended until an event like rain deposits them.  One last item to keep in mind, as the wind picks up past the threshold velocity where movement occurs, soil moves to the cube of the velocity.  So as the wind speed increases say from one to two, it increases movement by a factor of 8, not 2.  Next week, how to control wind erosion.

Barton wordmark